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conclusions can be given concerning the proportion of
this activity caused by invertebrates and other decompos-
ing reducers, since it has not yet been quantitatively eval-
uated. Under some conditions such organisms are very
numerous. The liveweight of termites in the tropical sa-
vanna of the Ivory Coast, for example, has been found
to be 40 grams per square metre in an area where above-
ground herbivores measure only one gram per square
metre. It is generally agreed, however, that the soil mi-
croflora (microscopic plants, including fungi and bac-
teria) is the single most important group of organisms af-
fecting the turnover of energy. The biomass of soil micro-
flora has been estimated to be 400 to 600 .grams per
square metre of soil surface on a dry-weight basis; how-
ever, probably less than 1 percent of this is active at any
one time.

It is not yet possible to identify to what extent various
groups of soil microflora contribute to the total of de-
composer activity in any given system. The rate of de-
composition in standing dead vegetation is usually slower,
however, than in litter and in vegetation in contact with
the ground. The bulk of the microbial decomposition
does not occur until the litter has either made contact
with the soil or has become densely compressed just
above the soil surface. The smaller macrofauna (animals
bigger than microbes), such as litter-feeding insects and
worms, are active in bringing litter into more intimate
contact with the soil. 3

UTILIZATION OF GRASSLANDS

Many early human civilizations developed in grassland
regions, so man should be familiar with the ecology of
grasslands. Greater interest, however, has been shown in
converting grasslands to the growth of annual crops than
has been devoted to considering whether they would have
been a more valuable resource in an untilled state.

Domesticated grazing animals occupy the most impor-
tant role in man’s conversion of natural-grassland plant
growth to a form of food that satisfied him. While con-
servationists in the past may have looked upon the do-
mesticated grazing animal as an intruder in natural grass-
land, this does not necessarily mean that the grassland
environment will deteriorate through the replacement of
natural by introduced animals. The philosophy of range
management that has developed in North America is
based on the concept of obtaining the highest sustained
level of animal production on natural grassland that-is
compatible with maintenance of the resource. Range
ecologists have been much more conscious of the need to
conserve land resources than have agriculturalists. In the
management of arable lands, for example, the guiding
principle has been almost exclusively determined by the
need to produce the maximum harvestable yield, a prac-
tice hardly compatible with conservation. The advantage
that the ecologist sees in the use of domesticated live-
stock in the rational management of rangelands is that
the distribution and density of these animals is under his
control to a far greater extent than would be possible
with native animals. The domestication of the range is
thus seen as a stabilizing situation.

The success achieved in increasing the harvestable yield
of intensively managed arable land and improving semi-
permanent grasslands of woodland climate has led to the
suggestion that the plant cover of nonarable grasslands
should be changed as much as possible by the introduc-
tion of domesticated forage crops that have been selected
and bred for high yield and for optimum response to fer-
tilization and management. A high degree of environ-
mental control is needed, however, to utilize the higher
potential of these species, and the indication is that the
native grass cover cannot be excelled by introduced spe-
cies for range production on nonarable land.

Attempts have been made to increase the productivity
of natural grassland by the use of herbicides and ferti-
lizers. Weed control of rangeland is economically practi-
cal only in cases where the weedy situation has been in-
duced by mismanagement and when this situation is cor-
rected. The effect of fertilizers is variable, yielding better
returns where moisture conditions are most favourable.

Some native species do not respond to increased levels of
nutrient supply and may be replaced after fertilization by
species that are more productive but dependent for sur-
vival on a continued supply of fertilizer nutrients.

After the initiation of tillage, highly fertile, temperate
grasslands gradually (over a period of 50 to 100 years)
attain a new level of equilibrium, which is associated with
a lower content of soil organic matter. The full impact
on organic-matter content will not occur until the orig-
inal organic material is replaced by that formed from the
annual agricultural plant cover. The concept that correc-
tive measures can be taken by future human generations
by addition of chemical fertilizer does not account for
changes in soil structure that may be associated with de-
clining organic content.

The maintenance of both arable and nonarable ecosys-
tems in grassland zones is vital to the continued provi-
sion of food for the world. The temperate grassland
zones include a very important portion of the cropland
of the earth (for example, 90 percent of the grain for
commerce originates here); the tropical and subtrop-
ical grasslands and savannas provide a possible means
for expanding agriculture when technology is developed
to manage these lands on a long-term basis.

BIBLIOGRAPHY. J.w. BEWS, The World's Grasses: Their
Differentiation, Distribution, Economics and Ecology (1929),
a comprehensive review of the nature of grasses and grass-
lands of Africa and their relation to those of other parts of
the earth; J.L. CLOUDSLEY-THOMPSON, The Zoology of Tropi-
cal Africa (1969), a scientific account of the wildlife of the
African savannas; RM. MOORE (ed.), Australian Grasslands
(1970), a compilation by many specialists (prepared for the
International Grassland Congress) of grazing resources, both
natural and man-modified; H.L. SHANTZ and C.F. MARBUT,
The Vegetation and Soils of Africa (1923), a classi-
cal account, with maps, resulting from a trip through
Africa by two distinguished Americans who were leaders in
the vegetation and soils disciplines; G.M. ROSEVEARE, The
Grasslands of Latin America (1948), an account of grazing
resources based on a survey of the scientific literature; J.E.
WEAVER, North American Prairie (1954), an authoritative,
popular work ‘on the history, nature, and response to man’s
occupation of the natural vegetation of the corn belt; and
with F.w. ALBERTSON, Grasslands of the Great Plains (1956),
an account similar to the above on the natural vegetation of
the Great Plains.

(RT.C.)

Gravitation

Gravitation is a universal force of attraction acting be-
tween all matter. The trajectories of bodies in the solar
system are determined, except for relatively tiny effects,
by the laws of gravity, while on Earth all bodies have a
weight or downward force of gravity proportional to their
mass, which the Earth’s mass exerts on them. Gravity is
by far the weakest known force in nature and therefore
plays no role in determining the internal properties of
everyday matter. But because of the long reach and uni-
versality of the gravitational attraction, gravity plays a
central role in shaping the structure and evolution of
stars, galaxies, and the entire universe.

The works of Isaac Newton and Albert Einstein domi-
nate the development of gravitational theory. Newton’s
classical theory of gravitational force held sway from its
presentation in his Principia, published in 1687, until Ein-
stein’s work in ‘the early 20th century. Even today, New-
ton’s theory is of sufficient accuracy for all but the most
precise -applications. Einstein’s. modern field theory of
general relativity predicts only minute quantitative dif-
ferences from the Newtonian theory except in a few spe-
cial cases. The major significance of Finstein’s theory is
its radical conceptual departure from classical theory and
its implications for further growth in physical thought
(see RELATIVITY).

DEVELOPMENT OF GRAVITATIONAL THEORY

Early concepts. The classical Greek philosophers con-
sidered the motions of the celestial bodies and of objects
on Earth as basically unrelated. The former was not con-
sidered as gravitationally determined, as the celestial
bodies were seen to follow perpetually repeating, nonde-
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scending trajectories in the sky. Aristotle envisioned such
bodies as possessing “natural” motions that 'did not re-
quire external causes or agents. In this view, celestial
bodies underwent their own particular “natural” motion,
while massive earthly objects possessed a natural ten-
dency to move toward the Earth’s centre. Two other
Aristotelian viewpoints were: that a body moving at con-
stant speed required a continuous force acting on it and
that force must be applied by contact rather than inter-
action or force at a distance. These views impeded un-
derstanding of the principles of motion and hence re-
tarded the development of a theory of universal gravita-
tion. During the 16th and early 17th century, however,
several scientific contributions to the problem of earthly
and celestial motion set the stage for Newton’s gravita-
tional theory.

Johannes Kepler, accepting the Copernican perspective
—in which the planets orbited the Sun rather than the
Earth—and using Tyco Brahe’s improved measurements
of planetary movements, succeeded in describing the
planetary orbits by simple geometrical and arithmetical
relations. Kepler’s three quantitative laws of planetary
motion were: (1) the planets describe elliptic orbits, of
which the Sun occupies .one focus; (2) the line joining a
planet to the Sun sweeps out equal areas in equal time;
and (3) the square of the period of revolution of a
planet is proportional to the cube of its average distance
from the Sun. During this same period, Galileo made
major progress in understanding the properties of “natu-
ral” motion and simple accelerated motion for earthly
objects.. He realized that bodies uninfluenced by forces
would continue indefinitely to move and that force was
necessary to change motion, not to maintain constant
motion. Galileo: performed experiments to show that the
Earth’s gravity produced constant downward acceleration
and that the downward gravitational acceleration was in-
dependent of the bulk or composition of bodies.

Newton’s law of gravity. The modern quantitative sci-
ence of gravitation began with the work of Newton. He
assumed the presence of an attractive force between all
massive bodies; this force does not require bodily con-
tact but acts at a distance. By invoking his law of inertia
(bodies not acted upon by a force move at constant speed
in a straight line), Newton concluded that a gravitational
force exerted by the Earth on the Moon was needed to
keep it in a circular motion about the Earth rather than
in a straight line and that this force could be, at long-
range, of the same kind as the force with which the Earth
pulled objects on its surface downward. Galileo had
previously measured the downward acceleration of bodies
on Earth to be approximately 980 centimetres (32 feet)
per second per second, while Newton calculated that cir-
cular orbital motion of radius R and period T required a
constant inward acceleration A equal to the product of
47* and the ratio of the radius to the square of the time:

47°R

A = (0))]
Applying this formula to the Moon’s orbit, which has a
radius of about 384,000 kilometres (about 60 Earth radii)
and a period of 27.3 days, the inward acceleration is ap-
proximately 2.7 X 10~° metres per second per second;
this is the same as 1/3,600 (1/60%) times the Earth’s sur-
face acceleration. Newton deduced that the gravitational
force between bodies diminishes as the inverse square of
the distance between the bodies, as he could thus relate
the two accelerations to a'common interaction. A further
assumption, that the mass of the Earth acts gravitational-
ly on the outside world as if the mass were concentrated
at the Earth’s centre, was needed to obtain his relation-
ship. Newton proved mathematically that this assump-
tion was true for all spherically symmetric bodies.

Newton saw that the gravitational force between bodies
must depend on masses of the bodies. Since a body of
mass M experiencing a force F accelerates at a'rate F/M,
a force of gravity proportional to M would be consistent
with Galileo’s observation that all bodies accelerate under
gravity toward Earth at the same rate. Newton’s law of
gravity can therefore be expressed mathematically by a
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relation expressing the law. If F1. is the magnitude of the
gravitational force acting between masses M; and M.
separated by distance Ds., then the force equals the
product of these masses and of G, a universal constant
divided by the square of the distance, D"

o= OHM o
The constant G is a quantity having the physical dimen-
sions (length)’/(mass)(time)’, its numerical value depend-
ing on the physical units of mass, length, and time used.
(G is discussed more fully in a later section.) To obtain
the total gravitational force on a body produced by many
masses represented as M, where the subscript i stands for
the positions 1, 2, . . . n, the individual forces must be
vectorially added together, as force has direction as well
as magnitude. Letting D; be the spatial vector from the
mass M to the mass M; in the same way, the force on M
due to several masses becomes the sum of the forces due
to each mass separately. In the following expression, in
addition to the quantities already explained, the symbol =
represents ' the sum, and the factor D;/D;® is needed to
give the direction and numerically'is equivalent to' divi-
sion by D;*:

M.D,
F= GM% 5

3

This is Newton’s gravitational law in its vector form. The
simpler expression gives the surface acceleration on
Earth; setting a mass equal to the Earth’s mass Mz and
the distance equal to the Earth’s radius 7z, the downward
acceleration of a body at the surface g is equal to the
product of the universal gravitational constant and the
mass of the Earth divided by the square of the radius:

= G @
re

The weight W of the body can be measured by the equal
and opposite force necessary to prevent the downward
acceleration; this is M,. The same body placed on the
Moon’s surface has the same mass, but as the Moon has
a mass of about 1/81 times that of the Earth and a
radius of only 0.27 of that of the Earth, the body on the
Moon’s surface acquires a weight of only 1/6 its Earth
weight, as demonstrated by the U.S. Apollo astronauts.
In orbiting satellites, where no force prevents the free
fall of the satellites in the gravitational field, the cargo
of humans and instruments experiences weightless con-
ditions although the masses remain the same as on Earth.

The two equations above can be used to derive Kepler’s
third law, for the case of circular planetary orbits. By put-
ting the expression for the acceleration 4 in equation (1)
equal. to the force of gravity for the planet, GM,Ms/R?,
divided by the planet’s mass M, M being the mass of the
Sun, and R, T being the radius and period of the orbit,
respectively, the following equation is obtained:

GMs _ 47 2R
R2

R= (S ®)

Newton was able to show that all three of Kepler’s ob-
servationally derived laws followed mathematically from
the assumption of his own laws of motion and the law of
gravity stated above. In all observations of the motion of
a celestial body, only the product of G and the mass can
be found. Newton first estimated the magnitude of G by
assuming the Earth’s average mass density to be about 5.5
that of water, somewhat greater than the Earth’s surface
rock density, and calculating the Earth’s mass from this.
Then, taking Mz and rs as the Earth’s mass and radius,
respectively, the value of G was

gre’
e ®

which numerically comes close to the accepted value of

or

G =

The
universal
constant G

Weight
and mass
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6.7 X 107® (cm)’/(gm)(sec)’, first directly measured by a
Cavendish balance experiment (see below).

Comparing equation (4) above for the Earth’s surface
acceleration g with the R*/T* ratio for the planets, a
formula for the ratio of the Sun’s mass, Ms, to Earth’s
mass, Mz, was obtained in terms of known quantities,
Rj being the radius of the Earth’s orbit:

Ms i 47°R%’
My nga:zl‘E2

By using observations of the motion of the moons of
Jupiter discovered by Galileo, Newton determined that
Jupiter was 318 times more massive than Earth but only
V4 as dense, having a radius 11 times larger than Earth.

When two celestial bodies of comparable mass interact
gravitationally, the bodies each orbit about a fixed point
(the centre of mass of the two bodies), which lies between
the bodies on the line joining them at a position such that
the distances to each body multiplied by each body’s mass
are equal. Observing that the Sun’s apparent position in
the ecliptic (the plane in which the Sun seems to be mov-
ing around the Earth) oscillates every month by about
12 arc-seconds (superimposed upon its annual motion)
and accounting for this by means of a motion of the
Earth around the Earth-Moon centre of mass, it was
concluded that this centre of mass is placed about 4,800
kilometres (3,000 miles) toward the Moon from the
Earth centre. From this, the Moon was found to be about
1/81 (4,800/384,000) as massive as the Earth. With slight
modifications Kepler’s laws remain valid for systems of
two comparable masses; the foci of the elliptical orbits
are the two-body centre-of-mass positions, and putting
M. + M, instead of Mg in the expression of Kepler’s
third law, equation (5) above, the third law reads:

G(M, + M.) T2
4q*

= 325,000 . @

R = ®)
This agrees with equation (5) when one body is so small
that its mass can be neglected. The rescaled formula can
be used to determine the separate masses of binary stars
(pairs of stars orbiting around each other; see STAR) that
are of a known distance from the solar system. Equation
(8) determines the sum of the stars’ masses; and, if Ri,
R; are the distances of the individual stars from the centre
of mass, the ratio of the distances must balance the in-
verse ratio of the masses, and the sum of the distances is
the total distance R. In symbols,

R1 Mz
= =i )

These relations are sufficient to determine the individual
masses. Observations of the orbital motion of double
stars, of the dynamical motion of stars collectively mov-
ing within their galaxies, and of the motion of the galaxies
themselves verify that Newton’s law of gravity is valid to
a high degree of accuracy throughout the visible universe.

Ocean tides, phenomena that mystified thinkers for
centuries, were also shown by Newton to be a conse-
quence of the universal law of gravitation, although the
details of the complicated phenomena were not under-
stood until comparatively recently. They are caused spe-
cifically by the gravitational pull of the Moon and, to a
lesser extent, of the Sun (see TIDES).

In the period following Kepler and Newton, improved
accuracy in the measurements of planetary motion led
to small discrepancies from the simple predictions of
Kepler’s laws. All but a few were later shown in accord
with the universal aspect of Newton’s law of gravity.
Small corrections due to the fact that all the planets must
perturb each other explained almost all variations in the
planets’ motions. The exceptions proved to be of large
importance. Uranus, the seventh planet from the Sun,
was observed to undergo variations in its motion that
could not be explained by perturbations due to Saturn,
Jupiter, and the other planets. The English mathemati-
cian John Couch Adams and the French mathematician
Urbain-Jean-Joseph Le Verrier independently assumed
the presence of an unseen eighth planet that could pro-
duce the observed discrepancies in the motion of Uranus.

R, + R, =

They calculated its position within a degree of which the
planet Neptune was discovered in 1846. Measurements
of the motion of the innermost planet, Mercury, over an
extended period led astronomers to conclude that the
major axis of this planet’s elliptical orbit precessed (pre-
cession is the gyration or wobble of the axis of a rotating
body affected by a gravitational field) in space at a rate
43 arc-seconds per century faster than could be accounted
for from perturbations of the other planets. In this case,
however, no other bodies could be found that could pro-
duce this discrepancy, and very slight modification of
Newton’s law of gravitation seemed to be needed. Ein-
stein’s theory of relativity precisely predicts this ob-
served behaviour of Mercury’s orbit (see RELATIVITY).

INTERPRETATION OF GRAVITY MEASUREMENTS

Potential theory. For irregular, nonspherical mass
distributions in three dimensions, the vector equation (3)
above, which expresses Newton’s law of gravity essen-
tially in its original form, is inefficient, though theoretical-
ly it could be used for finding the resulting gravitational
field. The main progress, after Newton, in classical
gravitation theory was the introduction of potential
theory, which allows practical as well as theoretical in-
vestigation of the gravitational variations in space and
anomalies due to the irregularities and shape deforma-
tions of the Earth.

Potential theory led to the following elegant formula-
tion: The gravitational acceleration, g, a function of
position R, g(R), at any point in space is given from a
function, ®, called the gravitational potential, by means
of a generalization of the operation of differentiation:

gR) = — + —1 + k,
in which ¢, §, k stand for unit baSlS vectors in a three-
dimensional Cartesian coordinate system. Whatever re-
striction on g is introduced by the mass density p, that
restriction is then transferred to the potential function &
and is expressed in an equation that was discovered by
the French mathematician Siméon-Denis Poisson:

2* " 9? 0%

Lopolor ﬁ) ®(R) = —47Gp(R),

in which the equation is to hold for well specified values
of R. The significance of this approach is seen by observ-
ing that Poisson’s equation can be solved under rather
general conditions, which is not the case with Newton’s
equation. When p is non-zero, the solution is expressed as
a definite integral:

om = o [ AEME

When p = 0 (that is, outside the Earth), Poisson’s equa-
tion reduces to the simpler equation of Laplace and has a
general solution expressed as a series of powers of the
trigonometric cosine function of ¢, the latitude angle
measure from the north pole:

GMsx [1 (5@)2 3cos’e — 1
\R 2

&)Hccs 0—3coso+ :|
G N e

in which, if R is the distance from the Earth’s centre, Rx
is the average Earth radius, ¢ is the latitude angle mea-
sured from the north pole, and J», Js, etc., are constants.
The constants J,, Js, etc., are determined by the detailed
mass distribution of the Earth; and, since Newton showed
that for a spherical body all the J. are absent, the J, must
be measurements of the deformation of the Earth from a
spherical shape; J. measures the magnitude of the Earth’s
rotational equatorial bulge, J» measures a slight pear-
shaped deformation of the Earth, and so on. By com-
parison of gravimeter measurements (see below) from
many parts of the Earth’s surface and by observations of
perturbations on satellite orbits and the Moon’s orbit,
the parameters J; and J; have been found to be 1,082.7
X 10® and —2.4 X 107, respectively. Higher terms in

®(R) =

Poisson’s
equation
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the potential series are being detected and measured by
continuous observation of near-Earth satellite orbits.

Effects of local mass differences. The method used to
describe global features of the Earth’s mass distribution
is inadequate to represent gravitational variations due to
local mass differences such as mountain ranges, mineral
deposits of unusual density, ocean basins, etc.; so other
methods have been developed for these purposes. Several
geological features of the Earth were first discovered
from gravity measurements. Using gravimeters and hori-
zontal pendulums, observers expected the additional bulk
of mountain ranges compared with surrounding plains to
produce slight attractive gravitational forces; instead, in
many cases, slight repulsion was found. Such repulsion
supports the view that mountain ranges float, possessing
deep roots, much as an iceberg does, of underlying light-
weight material that displaces the denser material of the
Earth’s interior. Portable gravimeters, which can detect
variations of a part in 10° in the gravitational force, are
today in wide use for mineral and oil prospecting, un-
usual underground deposits revealing their presence by
creating local gravitational variations (see below).

Man-made satellites tracked during orbital motion
around the Moon and around the planet Mars have fol-
lowed trajectories that are best understood by assuming
that these bodies possess large regions of anomalous mass
densities (called mascons) that produce gravitational field
variations. The lunar mascons are of sufficient size to
have perturbed the Apollo manned lunar landings, and
the paths of the approaching capsules were found to need
adjustment to account for the perturbations and to reach
their desired landing sites.

GRAVITATIONAL THEORY AND OTHER ASPECTS
OF PHYSICAL THEORY

The Newtonian theory of gravity is based on an assumed
force acting between all pairs of bodies; that is, an action
at a distance. When a mass moves, the force acting on
other masses has been considered to adjust instantane-
ously to the new location of the displaced mass. Special
relativity theory states that all physical signals travel no
faster than the speed of light. This theory, with the field
theory of electrical and magnetic phenoinena, have met
such empirical success, however, that most modern gravi-
tational theories are constructed as field theories consis-
tent with the principles of special relativity. In a field
theory the gravitational force between bodies is formed
by a two-step process: (1) One body produces a gravita-
tional field that permeates all surrounding space but has
weaker strength farther from its source. A second body
in that space is then acted upon by this field, experiencing
a force. (2) The Newtonian force of reaction is then
viewed as the response of the first body to the gravita-
tional field produced by the second body, there being at
all points in space a superposition of gravitational fields
due to all the bodies in it.

Field theories of gravitation. If the gravitational field
has a theoretical and conceptual existence of its own,
various new predictions of gravitational phenomena can
be made. The equations governing the time evolution of
the field predict a finite speed of propagation of disturb-
ances through the field, replacing the direct instantaneous
action at a distance by a delayed interaction transmitted
by the field. The gravitational field in most modern theo-
ries is, in fact, free to change dynamically in certain
modes independent of sources and to transmit energy
and momentum in these modes, in a manner similar to
electromagnetic wave radiation. ‘These gravitational
waves, which have been extensively studied mathemati-
cally since Einstein first showed their existence in theory,
may have recently been demonstrated experimentally in
the form of pulsed radiation received from the centre of
the Galaxy. The possible detection of these extra-terres-
trial gravitational waves was performed by monitoring
cotemporaneous mechanical vibrations present in a pair
of isolated, several-ton aluminum cylinders located about
1,500 kilometres (900 miles) apart. Field theories of
gravity predict that gravity waves will excite such me-
chanical oscillations in these rigid bodies.
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Field theories of gravity, Einstein’s general relativity
being an important example, also predict specific correc-
tions to the Newtonian force law, the corrections being
of two basic forms: (1) When matter is in motion, addi-
tional gravitational fields (analogous to the magnetic
fields produced by moving electric charges) are produced;
also, moving bodies interact with gravitational fields in a
motion-dependent way. (2) Unlike electromagnetic field
theory, in which two or more electric or magnetic fields
superimpose by simple addition to give the total fields, in
gravitational field theory nonlinear fields proportional to
the second and higher power of the source masses are
generated, and gravitational fields proportional to the
product of different masses are created. Gravitational
fields themselves become sources for additional gravita-
tional fields. Examples of some of these effects are shown
below. The acceleration, A, of a moving particle of neg-
ligible mass that interacts with a mass, m, which is at
rest, is given, in the following formula, derived from Ein-
stein’s gravitational theory. The expression for A now
has, as well as the Newtonian expression as given in equa-
tion (1), further terms in higher powers of Gm/R*—that
is, in G*m*/R'— and V is the particle’s velocity vector, A
its acceleration vector, R the vector from the mass m,

_and c is the speed of light. When written out, the sum is

_ _Gm G'm’R 3 GmR (V* V AV
i R =iz CRT ol (
—1/2—.,A+....
pr

This expression gives only the first post-Newtonian cor-
rections; terms of higher power in 1/C are neglected. For
planetary motion in the solar system the 1/C* terms are
smaller than Newton’s acceleration term by at least the
factor 10°%, but some of the consequences of these correc-
tion terms are measureable and important tests of Ein-
stein’s theory. It should be pointed out that prediction of
new observable gravitational effects requires particular
care; Einstein’s pioneer work in gravity has shown that
gravitational fields affect the basic measuring instruments
of experimental physics—clocks, rulers, light rays—with
which any experimental result in physics is established.
Some of these effects are listed below:

1. The rate that clocks run is reduced by proximity of
massive bodies; i.e., clocks near the Sun will run slowly
compared with identical clocks farther away from it.

2. In the presence of gravitational fields the spatial
structure of physical objects is no longer describable
precisely by Euclidean geometry; for example, in the ar-
rangement of three rigid rulers to form a triangle, the
sum of the subtended angle’s will not equal 180°. A more
general type of geometry, Riemannian geometry, seems
required to describe the spatial structure of matter in the
presence of gravitational fields (see PHYSICAL THEORIES,
MATHEMATICAL ASPECTS OF).

3. Light rays do not travel in straight lines, the rays
being deflected by gravitational fields. To distant ob-
servers the light-propagation speed is observed to be re-
duced near massive bodies.

Gravitational fields and general theory of relativity. In
Einstein’s general theory of relativity the physical conse-
quences of gravitational fields are stated in the following
way. Space-time is a four-dimensional non-Euclidean
continuum, the curvature of space-time’s Riemannian
geometry being produced by or related to the world’s
matter distribution. Particles and light rays travel along
the geodesics (shortest paths) of this four-dimensional
geometrical world.

The experimental foundations for modern theories of
gravity can be classified into two categories—null ex-
periments and the detection of extremely small (post-
Newtonian) effects. Null experiments establish the ab-
sence of conceptually possible gravitational effects, usual-
ly thereby greatly restricting the class of acceptable laws
of gravity. The small differences from Newtonian gravi-
tation, and their interpretation, are discussed below.

At the turn of the century the Hungarian physicist Baron
Lérant (Roland) E6tvos found that different materials ac-
celerated in the Earth’s field at identical rates to an ac-
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curacy of one part in 10°. Recent experiments have in-
creased the observed equality of accelerations to one
part in 10*. Newtonian theory is in accord with these re-
sults because of his postulate that gravitational force is
proportional to a body’s mass.

Inertial mass is a mass parameter giving the inertial re-
sistance to acceleration of the body when responding to
all types of force. Gravitational mass is determined by the
strength of the gravitational force experienced by the
body when in the gravitational field g. The Eotvos ex-
periments, therefore, show the equality of gravitational
and inertial mass for different substances.

Einstein’s special theory of relativity views inertial mass
as a manifestation of all the forms of energy in a body
according to his fundamental relationship E = mc?, E
being the total energy content of a body, m the inertial
mass of the body, and c the speed of light. Viewing gravi-
tation, then, as a field phenomenon, the null result of the
Eotvos experiments indicates that all forms of nongravi-
tational energy must identically couple to or interact with
the gravitational field, because the various materials in
nature possess different fractional amounts of nuclear,
electrical, magnetic, and kinetic energies, yet they accel-
erate at identical rates.

In the general theory of relativity the gravitational field
also interacts with gravitational energy in the same man-
ner as with other forms of energy, an example of that
theory’s universality not possessed by most other theories
of gravitation. E6tvos’ experiments using celestial bodies
that contain a detectable fraction of internal gravitational
energy were testing this feature of the general theory of
relativity in the 1970s; these experiments are intended to
determine whether the various solar-system bodies accel-
erate at identical rates in the Sun’s field. Measurements
of great precision, using radar and laser ranging, of the
time-dependent interbody distances between the Earth
and Moon, the Earth and Jupiter, and other such rela-
tionships are now possible (see below).

Gravitational consequences of the equivalence principle.
A decade before he completed his full mathematical
theory of gravity, Einstein predicted new gravitational ef-
fects using the equivalence principle. Observing that the
equality of gravitational and inertial mass made impossi-
ble a distinction between uniform gravitational fields and
accelerated coordinate systems, he proposed the null
principle: no experiment can distinguish between local
gravitational fields and accelerated coordinate systems.
He then was able to show that clocks would run slower
when near massive bodies and that light would be de-
flected toward massive bodies by their gravitational
field.

Newton’s third dynamical law states that every force
implies an equal and opposite reaction force. Modern
field theories of force contain this principle by requiring
every entity that is acted upon by a field to be also a
source of the field. A recent null experiment established
to a one-part-in-20,000 accuracy that different materials
produce gravitational fields with a strength the same as
they are acted upon by gravitational fields. In this ex-
periment a sphere of solid material was moved through
a liquid of identical weight density. The absence of a
gravitational effect on a nearby Cavendish balance in-
strument during the sphere’s motion is interpreted as
showing that the two materials had equal potency in pro-
ducing a local gravitational-field anomaly.

Other experiments have brought confirmation of Ein-
stein’s predictions to an accuracy of a few percent. Using
the Mossbauer effect to monitor the nuclear reabsorption
of resonant gamma radiation (hard X-rays), a shift of
wavelength of the radiation which travelled vertically
tens of metres in the Earth’s gravitational field was mea-
sured, the slowing of clocks (in this case the nuclear
vibrations are clocks) as predicted by Einstein has been
confirmed to 1 percent precision. If » and Ay are clock
frequency and change of frequency, respectively, A is
the height difference between clocks in the gravitational
field g. This is
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For a height of ten metres (about 30 feet) this effect pro-
duces only a one-part-in-10* change in clock rates. The
predicted deflection of light in gravitational fields was first
detected during a 1919 solar-eclipse experiment. Recently
progress has been made in measuring a related effect,
the slowing of light’s speed of propagation when near
massive bodies. Timing the round-trip travel time for
radar pulses between Earth and other inner planets or
artificial satellites passing behind the Sun, experiments
have confirmed to about 4 percent the prediction of an
additional time delay, At, given by a formula in which
M is the Sun’s mass, R; and R. are the distances from
the Sun to Earth and to the other reflecting body, D is
the distance of closest approach to the Sun of the radar
pulses. The additional time delay At is expressed as 4G
times the Sun’s mass over the cube of the velocity of light,
¢, times the logarithm of the quantity: four times the
product of R, and R, divided by the square of D. In sym-
bols,

4G M, 1 4R.R,

¢ T
These radar ranging experiments to bodies in the solar
system naturally complement the classical astronomical
optical measurements of bodies’ angular positions as seen
from Earth. Radar tracking of the inner planets confirms
to a few percent the precessional motion of the planets’
elliptical orbits predicted by the general theory of rela-
tivity.
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SOME ASTRONOMICAL ASPECTS OF GRAVITATION

Recent astrophysical discoveries such as quasi-stellar ob-
jects, pulsars, and the apparent gravitational radiation
pulses being received from our galactic centre indicate
that unusual astrophysical objects containing intense
gravitational fields may exist in the universe. Modern
physical theory predicts that a sufficiently massive object
must, upon exhausting its nuclear fuel, inevitably col-
lapse under its gravitational self-attraction, in most cases
expelling part of its material in a supernovae explosion.
Making only very general assumptions about the inter-
action properties of matter, it is concluded that the core
of these collapsed stars will end either in a new super-
dense state of matter—the neutron star of typical density
10" kilograms per cubic metre—or it is believed the core
will collapse indefinitely toward a singularity, altering the
properties of the surrounding space because of the enor-
mously strong gravitational fields produced, so that physi-
cal communication with the outside world is quickly cut
off, even light rays being trapped within this gravitational
or black hole.

It is presently thought that the pulsars discovered in
1968 are neutron stars, having masses comparable to the
Sun but diameters of only ten to 100 kilometres (six to
60 miles). The highly periodic electromagnetic radiation
pulses coming from known pulsars with periods of from
1/30 of a second up to about a second require something
like very small, but massive, rotating neutron stars as
their sources.

A black hole is the name given to the volume sur-
rounding a collapsed star (an enormous mass in a tiny
space), in which the gravitational field is so large that no
radiation can get out; as a result it cannot be observed
from outside. The astronomical search for a black hole
is made difficult because of the very short time required
for their formation (fractions of a second) and the rela-
tive infrequency of their creation. After being formed
they emit no radiation or signals for the astronomer to
detect. Present efforts are concentrated on the possibility
of detecting a gravitational hole with a visible companion
binary star. The gravitational wave pulses believed to be
detected by the hundreds per year may be the gravitation-
al radiation that would result from massive bodies being
strongly accelerated into a large black hole (of thousands
of solar masses) located near the centre of the Galaxy.

This field is experiencing such rapid theoretical and ex-
perimental development that these present viewpoints
must certainly be considered as somewhat tentative and
temporary. (K.L.N.)
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THE ACCELERATION OF GRAVITY ON THE EARTH’S SURFACE

More than 300 years ago Galileo, in studying how things
fall toward the Earth, discovered that the motion is one
of constant acceleration. He was able to show that the
distance a falling body travels from rest in this way varies
as the square of the time. The acceleration due to gravity
at the surface of the Earth is about 980 centimetres (about
32 feet) per second per second; that is, following its re-
lease, an object will gain in speed 980 centimetres per
second for each second it falls.

Perhaps Galileo’s most noted conjecture was that in a
perfect vacuum all bodies would fall at the same rate; if
they are released together, they will strike the ground
together. This conjecture, in combination with his ob-
servation that the motion of free fall is one of constant
acceleration, leads to the result that all bodies fall with
the same acceleration. This assumption of a common ac-
celeration has proved to be one of the cornerstones of
gravitational physics; it has been tested many times—
most notably in EGtvOs experiments and in the recent
extraordinarily precise experiments of the U.S. physicist
Robert H. Dicke and his colleagues. Common accelera-
tion indicates that a body’s weight (the Earth’s gravita-
tional pull on the body) is proportional to its inertial mass
—that is, to the resistance it offers to an accelerating
force. The constant of proportionality is simply the ac-
celeration of gravity. Thus, g plays a dual role: the value
of the acceleration observed in free fall (the acceleration
of gravity) is also the constant of proportionality between
mass and weight (the force of gravity per unit mass).

Knowledge of the acceleration due to gravity is of im-
portance to several different disciplines of the physical
sciences. Its absolute value provides a base that, together
with the standard of mass, establishes the derived stan-
dard of force. The standard of force, in turn, is a neces-
sary quantity in the assignment of values to the electrical
units of current and voltage. The acceleration due to
gravity is also an important factor in the accurate pres-
sure determinations needed for the thermodynamic tem-
perature scale and the establishment of the International
Practical Temperature Scale. Absolute measurements of
the acceleration due to gravity are also of interest to the
science of geodesy. Rapid advances have recently been
made in setting up a world gravity network to establish
reliable gravity values at a large number of base points
located strategically over the Earth.

Variations in g. Changes due to location. Though often
thought of as a constant over the surface of the whole
Earth, the acceleration g varies by about %2 of 1 percent
with position on the Earth’s surface, from about 978 cm/
sec’ at the Equator to approximately 983 cm/sec’ at the
Earth’s poles. This variation stems chiefly from the rota-
tion of the Earth, as part of the Earth’s pull is balanced
by keeping objects rotating with the Earth instead of
flying tangentially off into space (as mud does off a
spinning wheel). This effect is also responsible for the
bulge of the Earth at the Equator and the slight flat-
tening at the poles. The distance to the centre of
the Earth, therefore, increases with the bulge from the
poles to the Equator, and consequently g, which for
a spherical Earth of radius re and mass Mz is given sim-
ply by GMx/ri? is less toward the Equator.

In addition to this broad-scale variation, local variations
of a few parts in 10° or smaller are caused by variations
in the density of the Earth’s crust as well as height above
sea level. Further, at any one particular place, g, consid-
ered to be the resultant force, varies with time as a result
of the changing gravitational attraction of the Sun and
the Moon.

Changes with time. For most purposes, only knowl-
edge of the variation of gravity with time at a fixed place
(tidal variation; see TIDES) or of the gravity differences
from place to place is required. Accordingly, the great
bulk of gravity measurements that have been made are
relative; that is, they measure only the differences be-
tween gravity -values at various places. In tribute to
Galileo the unit gal (equivalent to 1 cm/sec®) has been
adopted as the unit of acceleration of gravity, and this
has been subdivided to milligal, essentially one part in
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10° of g, for convenience; thus, one milligal (mgal)
= 0.001 gal = 0.001 cm/sec’.

Great progress was made during the 1960s in the devel-
opment of new standards of accuracy for the measure-
ment of g on land, on ships, and in the air, as well as in
space. Recent progress in gravimetry has been influenced
by improvement in the accuracy and reliability of ab-
solute gravity determinations. As a result, a worldwide
network of gravity base stations and calibration lines has
been established. The methods used for the measurement
of the acceleration due to gravity in terms of the funda-
mental units of length and time are described below.

Only two basic methods have been used to measure the
absolute acceleration of gravity: by timing (1) freely fall-
ing bodies and (2) those that move under gravity but
whose motion is constrained in some way, as in the case
of a pendulum.

Pendulum measurements of g. Pendulum measure-
ments of g are familiar to almost everyone who has taken
an introductory course in physics. A pendulum is called
simple if it consists of a heavy bob at the end of a nearly
weightless arm or compound if the weight is distributed
also through the arm. In the case of a simple pendulum,
the time of swing is proportional to the square root of the
length divided by the acceleration of gravity. This rela-
tive ease of timing of a pendulum swing offers a distinct
timing advantage over free-fall measurements. The con-
straint on the body’s free fall permits a large number of
“drops” to be made very conveniently during a measured
interval of time. The price one pays for this gain is that,
having introduced a constraint, the effects of the con-
straint on the performance of the pendulum must be
taken precisely into account. The English physicist Henry
Kater showed (1817) that if the period of swing was the
same about each of the points of support for a pendulum
that could be hung from either of two fixed points, the
distance separating these points of suspension was equal
to the length of a simple pendulum having the same pe-
riod. Once the equality of periods has been established
(by adjusting the position of attached weights), the prob-
lem is then reduced to that of measurement of the com-
mon period and of the distance separating the two sup-
ports. Reversible pendulums, which can reach an ulti-
mate accuracy in the range of a few parts in 10° (1 mgal),
provided the only practical basis for absolute measure-
ments of g from Kater’s time until the middle of the 20th
century.

The most accurate and most straightforward way of
measuring the acceleration due to gravity is now to mea-
sure directly the acceleration of a freely moving body.
Only relatively recently has it been possible by electronic
control to realize the necessary accuracy in the measure-
ment of short time intervals to permit effective measure-
ment of g by direct free fall.

Accuracy attained in the known value of g. The early
free-fall experiments (dating from 1952) used geometri-
cal optics to define the position of an object as it fell.
From 1963, direct interferometric methods using corner
cube mirrors, one of which was dropped, have led to
more accurate distance measurements during the free fall.
More recently still, lasers have been used as light sources
in free-fall interferometric devices. By the 1970s the best
absolute-gravity experiments had demonstrated accura-
cies in the 0.01-0.05 mgal range. Furthermore, measure-
ments with a semi-portable laser interferometer apparatus
have now been made at a number of stations covering a
gravity range of 4,800 mgal with an absolute accuracy of
five parts in 10® (0.05 mgal).

For most purposes only a knowledge of the variation in
gravity from place to place is required. Accordingly the
great bulk of gravity measurements are relative and give
gravity differences between places on the Earth. These
can then be referred to an absolute system to produce
gravitational values for the sites.

Accuracy of pendulum measurements. Since the time
of Newton, measurements of gravity differences (strictly
of the ratio of one value to another) have been made by
timing the same pendulum at two sites where gravity is to
be compared. Already in 1818, such relative measure-

The
work of
Henry
Kater



292 Gravitation

Spring
gravity
meters

ments reached an accuracy of a few parts in 10°. The
most accurate work is now done with two pendulums
swinging in opposite phase; in this way the sway of the
support due to the reaction of the pendulums is elimi-
nated, and also any movements of.the support will pro-
duce equal and opposite changes in the periods of the two
pendulums, which can be made to cancel out if the mean
period of the two pendulums is used.

The accuracy of relative measurements with a pendulum
depends on timing accuracy and the constancy of the
conditions. Further, the difference in gravity is obtained
in absolute units and therefore does not require any
instrumental calibration. Accuracy of modern pendulum
observations is limited by the scatter of the results when
a pendulum is swung repeatedly in one place and, mainly,
by changes in the pendulums that occur during trans-
portation from place to place. The best claimed accuracy
is a few tenths of a milligal.

Use of gravity meters. Up to about 1930 the pendulum
was the only instrument available for relative gravity
measurements, even for small scale geophysical prospect-
ing. The development of static gravimeters restricted
pendulum measurements to providing the calibration for
these gravimeters. The growing number of truly absolute
determinations can be expected to make even this use
obsolete.

Spring gravity meters balance the force of gravity mg
on a mass m in the gravity field to be measured, against
the elastic force of the spring, using either electronic or
mechanical means to achieve high sensitivity. Vibrating
string gravity meters in which the string’s vibration fre-
quency is determined by g have also been developed. A
device of this type was employed by the Apollo 17 astro-
nauts on the Moon to conduct a gravity survey of their
lunar landing site. One of the most recent developments
has been the superconducting gravimeter, an instrument
in which the position of a magnetically levitated super-
conducting sphere is sensed to provide a measure of g.

Modern gravity meters may have sensitivities greater
than 0.005 mgal, the standard deviation of observations
in exploration surveys being, in the best performance, of
the order of 0.01-0.02 mgal.

Differences in gravity measured with gravimeters are
obtained in quite arbitrary units—divisions on a gradu-
ated dial, for example. The relation between these units
and milligals can only be determined by reading the in-
strument at a number of points where g is known as a
result of absolute or relative pendulum measurements.
Further, because an instrument will not have a complete-
ly linear response, known points must cover the entire
range of gravity over which the gravimeter is to be used.

Gravimetric surveys. Recently, by combining all avail-
able absolute and relative measurements, it has been pos-
sible to obtain the most probable gravity values at a
large number of sites to a high degree of accuracy. The
culmination of gravimetric work begun in the 1960s has
been a worldwide gravity reference system having an ac-
curacy of one part in 10" (0.1 mgal) or better.

Since g is an acceleration, the problem of its measure-
ment from a vehicle that is moving and therefore un-
avoidably accelerating relative to the Earth raises a num-
ber of fundamental problems. Pendulum, vibrating string,
and spring-gravimeter observations have been made from
submarines; using gyrostabilized platforms, relative grav-
ity measurements with accuracies approaching a few
mgal have been and are being made from surface ships.
Experimental measurements with various gravity sensors
on fixed-wing aircraft as well as on helicopters have
been carried out. Additional information about the
Earth’s gravitational field has been made possible through
the use of artificial satellites. Tidal gravity variations are
observed through the use of sensitive recording gravim-
eters. One of the most remarkable recent measurements
was the mapping of variations in the gravitational field on
the visible side of the Moon by observed perturbations int
the orbits of Lunar Orbiter satellites.

The value of gravity measured at the surface of the
Earth is the resultant of such component factors as (1)
the gravitational attraction of the Earth as a whole, (2)

centrifugal force caused by the Earth’s rotation, (3) eleva-
tion, (4) unbalanced attractions caused by surface topog-
raphy, (5) tidal variations, and (6) unbalanced attractions
caused by irregularities in underground density distribu-
tions. Most geophysical surveys are aimed at separating
out the last of these in order to interpret the geological
structure. It is therefore necessary to make proper al-
lowance for the other factors.

The free-air and Bouguer corrections factors. The first
two factors imply a variation of gravity with latitude that
can be calculated for an assumed shape for the Earth.
The third factor, the decrease in gravity with elevation,
due to increased distance from the centre of the Earth,
amounts to —0.3086 mgal/m (—0.09406 mgal/ft). This
value, however, assumes that material of zero density oc-
cupies the whole space between the point of observation
and sea level, and it is therefore termed the free-air cor-
rection factor. In practice, the mass of rock material that
occupies part or all of this space must be considered.
Where the topography is reasonably flat this is usually
calculated by assuming the presence of an infinite slab of
thickness equal to the height of the station, 4, and having
an appropriate density o; its value is +0.04185 oh
mgal/m or 10.01276 oh mgal/ft. This is commonly
called the Bouguer correction factor.

Terrain or topographic corrections can also be applied
to allow for the attractions due to surface relief if the
densities of surface rocks are known. Tidal effects the
amplitudes of which are lower than 0.3 mgal can be cal-
culated and allowed for.

In defining anomalies, the observed gravity g, is com-
pared with the theoretical value gy for the latitude of the
station. The difference is then corrected for the elevation,
h, of the station, using the free-air correction factor, F,
with or without the Bouguer correction factor, B. The
topographic correction, T, is also applied, giving in sym-
bols: free-air anomaly = go — gy = Fh + T and Bou-
guer anomaly = g, — g, + (F — B)h + T. In explora-
tion surveys Bouguer anomalies are most commonly
used. Free-air anomalies or isostatic anomalies, in which
a further correction for crustal material based on the
compensation of mass above a certain depth has been
applied, are those generally adopted in geodetic work.

(Ja.F.)

THE GRAVITATIONAL CONSTANT, G

The gravitational constant, G, has been introduced in
the first part of this article. Although G is one of the
most fundamental constants in nature, it probably is the
least accurately known because of the extreme weakness
and universality of the gravitational interaction. The
weakness is such that the force of attraction between two
spheres each weighing one kilogram spaced 0.1 metre
apart is only about 1.3 X 107 of the pull of gravity on
one of the spheres. The universality of the gravitational
force, already assumed by Newton, is supported by the
failure of experiment to show any variation of G that
depends on the kind or size of the attracting masses,
their temperature, or the amount of other matter placed
between them. Consequently, in order to determine G,
it is not only necessary to measure very tiny forces or
torques but also to do so in the presence of the much
larger perturbing forces due to all of the other matter in
the universe, as it is impossible to shield the masses un-
der investigation from the rest of the universe. The clas-
sical theory of celestial mechanics is based upon Newton’s
law and is used to predict with great accuracy the paths
of the Moon, the Sun, the planets, and other bodies
through space; but solution of the mathematical equa-
tions obtained from astronomical observations does not
give G uniquely, but rather—if M is the mass of one of
the interacting bodies—the highly precise product MG.
Principal methods of measuring G. There are three
principal methods of measuring G: (1) in which the pull
of the Earth is compared with that of a large natural
mass, such as a mountain or other topographical mass, on
that of a known mass called a test mass; (2) in which a
comparison is made between the Earth’s attraction and
that of a known mass on a test mass, as in the common
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Figure 1: Modified Cavendish deflection experiment. The
masses M, are deflected horizontally by the masses M,, first
In position shown by full circles, then at dotted circles. The
twist is measured on the scale from reflection of light from
a small mirror at B (see text).

chemical balance experiments; and (3) in which direct
determination of the force between known masses is
made in the laboratory. At the present time, experiments
in the first category are of historical interest only and
have not yielded a reliable value of G. As more accurate
values of G become available by other methods, how-
ever, such experiments in connection with modern geo-
physical investigations can give valuable information con-
cerning the densities and density gradients, especially in
the Earth and Moon.

The various experimental methods of determining G in
the laboratory have in the past employed some form of
torsion balance or the common balance. According to
the 18th-century English physicist Lord Henry Caven-
dish, the torsion balance was invented by the British
geologist and astronomer, the reverend John Michell, for
the purpose of measuring G, though Michell died before
the apparatus was completed. The first reliable measure-
ment of G was carried out by Cavendish in 1798 with a
torsion balance of the Michell type. Figure 1 shows
schematically the method used by Cavendish, though
many details of the actual apparatus differed from those
of the Figure. Two small spherical masses, M., are
mounted on a stiff rod, 4, and suspended by a torsion
fibre, f. A light beam is reflected from a mirror, B, rigidly
attached to 4 and brought to focus on a scale, S. When
the large spherical masses, M., are placed in the fixed
position shown in Figure 1, the gravitational interaction
produces a torque on the small mass system, Mi, which
causes A to rotate around its vertical axis. This rotation
continues until the torque produced by the gravitational
attraction of the small mass system, M,, and the large
mass, M., is balanced by the restoring torque due to the
twist in the fibre. The deflection of the light beam on the
scale, S, is then a measure of the twist in the fibre from
which the torque, due to gravitational interaction, can be
found. If the large masses, M., are shifted from the posi-
tions shown in the Figure into the positions indicated by
the dotted circles, the small mass system is twisted in the
opposite direction, and the deflection of the light beam
on the scale S is reversed. The extreme smallness of the
deflection of the light beam usually limits the precision
of the method. This torsion-balance-deflection method
was perfected by the English physicist Sir Charles Vernon
Boys, who first developed the quartz-fibre suspension.

The common balance method consists in supporting
equal spherical masses, M, from the weighing pans of
an equal arm chemical balance. A large spherical mass,
M., mounted on a turntable is rotated directly under one
of the masses M. If d is the distance between the centres
of the two spheres, the downward gravitational attraction
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of M, on M, given by GM:M./d" adds to the pull of grav-
ity Mg due to the Earth, and it tips the equal arm balance
through a small angle that is measured by a pointer or
optical magnification device. M- is then rotated until it
is under the weight attached to the opposite arm of the
balance, and the deflection that now takes place in the
opposite direction is measured. From calibration of the
balance, G' can then be calculated in terms of g and d.
Careful experiments were carried out with this method,
principally by the English physicist John Henry Poynt-
ing, using a specially constructed balance; but Mg
was so much larger than the gravitational interaction of
the two masses that the results were not as reliable as
those obtained with the torsion balance, in which the pull
of the Earth is not directly superposed upon the gravita-
tional interaction.

Figure 2 shows a schematic diagram of the torsion-bal-
ance-oscillation method. The torsion balance that sup-
ports the small masses is similar to that described in Fig-
ure 1, but the large attracting masses, M., are placed in
the same straight line that passes through the small mass-
es, as shown in Figure 2. The torsion balance containing
the small masses is then given a small displacement and
the period of oscillation measured. This period can also
be calculated in terms of G and the other quantities. The
large masses, M., are then placed in the positions indi-
cated by the dotted lines, which are in a line perpendic-
ular to the line joining the small masses, M,, and passing
through its centre. A second determination of the period
of the torsion pendulum is then measured. From these
values it is possible to determine G. The advantage of
this method over the torsion-balance-deflection method
is that periods of oscillation can be measured with great-
er precision than small deflections, but it suffers from un-
certainties due to the effect of gravitational gradients and
neighbouring masses. This method produced what until
recently was usually regarded as the most reliable value
of G. In 1971 it was again used to obtain a new value of
G. The new study is being carried out in the Grotta Gi-
gante in Italy. The small masses, M;, each weigh 10
kilograms and the large masses 500 kilograms while the
torsion-wire suspension is 90 metres long. With the os-
cillation method, however, the torsion pendulum must
be in a vacuum to prevent large damping through air
resistance. The method has been modified in another
study so that both the small and large mass systems are
on separate torsion suspensions and are brought into
resonance, but the result with this arrangement is be-
lieved to be less precise than that achieved by the U.S.
physicist Paul Heyl (published in 1930; see Table).

The Table is a partial list of the measured values of G.
The accuracy of the measurements made before 1930 is
difficult to evaluate, but it is probable that the values re-
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Figure 2: Elements in the torsion-balance resonance
experiment (see text).
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Best Values of the Gravitational Constant G
(up to 1942)

year method G unit:

(10-UINm2Kg2)

Cavendish 1798 torsion-balance (deflection) 6.754
Reich 1838 torsion-balance (deflection) 6.61
Baily 1842 torsion-balance (deflection) = 6.475
Von Jolly 1881 common balance 6.465
Wilsing 1889 metronome balance 6.596
Poynting 1891 common balance 6.698
Boys 1895 torsion-balance (deflection) 6.6576
Braun 1896 torsion-balance (oscillation) 6.6579
Eotvos 1896 torsion-balance (oscillation) 6.65
Richarz 1898 .common balance 6.685
Burgess 1901 torsion-balance (deflection) 6.64
Heyl 1930 torsion-balance (oscillation) 6.670
Zahradnicek 1932 torsion-balance (resonance) = 6.659
Heyl and Chrzanowski 1942 torsion-balance (oscillation) 6.673

ported by Heyl and his associates—G = (6.670 £ 0.015)
X 107" Newton-square metre per square kilogram—is
the most reliable among those listed.

A new method was devised in the 1960s and is illustrated
in Figure 3. Two comparatively large spherical masses
(ten-kilogram tungsten spheres) are mounted on a rotary
table that can be turned about its vertical axis by a servo-
controlled electric motor. An airtight cylindrical chamber
also is rigidly mounted upon the rotary table with its
vertical axis coincident with the axis of rotation. The
small mass system, which consists of a small cylinder
with its axis horizontal, is supported by a torsion fibre
fastened to the top of the cylinder so that the fibre hangs
in the axis of rotation of the table, as shown in Figure 3.
The gravitational interaction between the large and small
mass systems tends to rotate the small mass system in a
direction that brings the axis of the small cylinder into
coincidence with an imaginary line passing through the
centres of mass of the large spheres. This changes the
angle 6. A change in ¢, however, also produces a change
in the angle B between a light beam and its reflection
from a mirror mounted on the small mass system. The
light source and the photo-diode sensing system are rig-
idly mounted on the table in such a way that a change in
B generates a photo-diode signal that actuates the servo-
motor, which in turn rotates the table so that 8 and ¢
remain constant to less than one-half second of arc. Since
the angle ¢ remains constant, the gravitational interaction
between’ the small and large mass systems produces a

From an illustration by Marina Givotovsky in Physics Today (May, 1971)
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Figure 3: Angular acceleration method of measuring
gravitational interaction (see text).

constant torque on the small cylinder. This in turn pro-
duces a constant angular acceleration that results in an
equal constant angular acceleration of the rotary table.
This method possesses three novel features that should
contribute to improved reliability and accuracy. First, the
acceleration of the table can be measured with much
greater precision than a deflection, because the change in
frequency of rotation can be measured over a long period
of time, and this automatically increases the precision.
Second, the two mass systems rotate about their common
axis many times during a measurement, and consequently
the effects of gravitational fields and field gradients due
to unavoidable stationary masses are essentially can-
celled. Also, the effect of the masses moving with the
rotary table, as well as the table itself, is eliminated by
determining the acceleration of the rotary table with the
large spheres removed from the table. Finally, the co-
ordinates or positions of the interacting masses with re-
spect to a rotating coordinate system do not change dur-
ing a measurement; hence, the necessary distance can be
precisely determined. A preliminary value of G = (6.674
+ 0.012) X 10" nm’/kg’ has been reported, but the
method is claimed to promise much higher accuracy.

Weighing the ‘Earth. If Newton’s equation mentioned
above is applied to the attraction of the Earth on a small
mass, M,, with g as the acceleration of gravity and Mz
and rz as the mass and effective radius of the Earth, re-
spectively, then ¢ = GMx/rzs. Since g and rz are known,
the mass of the Earth, M., can be obtained if G is known.
For this reason Cavendish and some of the early workers
referred to their work as “weighing the Earth.” Actually,
no way is yet known for reliably obtaining the mass of
the Earth, Moon, planets, or other heavenly bodies—say
in kilograms, tons, etc.—without a knowledge of G. The
mass of the Earth is approximately 5.98 X 10* kilograms
(13.18 X 10* pounds). Since the radius of the Earth is
known, its volume can be calculated so ‘that the mean
density of the Earth is obtained. This mean density of the
Earth is approximately 5.52 times that of water, while
the mean density of the Sun is 1.43 times that of water.
These mean densities are becoming of considerable im-
portance in geophysical research.

Fundamental character of G. In addition to the above
practical needs for more accurate values of G, because
of its fundamental nature it necessarily must enter into
all major cosmological questions. Some -cosmological
theories predict a minute decrease in G of about one part
in 10" per year. Very precise measurements made in the
early 1970s of radar-echo time delays between the Earth
and Mercury indicate that G does not vary by more than
four parts in 10 per year, unless there are unknown
compensating factors in the experiments. Speculation
that G may be influenced by the position in space led to
proposals for the measurement of G in space vehicles.
Other suggestions postulate effective changes in G at very
small and at very large distances and with time. The
absolute measurements.of G are not yet accurate enough
nor is the time base long enough to resolve these or many
other important questions. On the other hand, G seems,
to the limit of present accuracy, to be a truly fundamental
constant, both in magnitude and sign, and independent of
perturbing effects not only in the case of the gravitational
interaction of matter but also that of antimatter as well.

(J.W.B.)
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Graywackes

Graywacke is the name applied to generally dark-col-
oured, very strongly bonded sandstones that consist of a
heterogeneous mixture of rock fragments, feldspar, and
quartz of sand size (Y¢—2 millimetres [0.002-0.078
inches]), together with appreciable amounts of mud ma-
trix (less than 14 millimetres [0.002 inches]). Almost all
graywackes originated in the sea, and many were de-
posited in deep water by density (turbidity) currents.

The name graywacke (from the German Grauwacke)
was first used by the German mineralogist Abraham Wer-
ner in 1787. It describes the colour and texture of the
rock, “wacke” being a term used for the heterogeneous
weathering products derived from igneous and metamor-
phic rocks. The classic German locality for graywacke is
the Devonian and Carboniferous sequence of the Harz
Mountains.

In 1818 John Mawe wrote, “Geologists differ much as to
what is, and what is not, Grey Wacce.” This is still true.
Recent definitions by various geologists characterize
graywackes as sandstones that (1) contain more than 10,
15, or 20 percent mud matrix; (2) contain less than 75
percent quartz and more than 25 percent nongranitic
feldspars and rock fragments; (3) have similar mineralo-
gy and chemistry to those from the Harz Mountains; or
(4) display associations of sedimentary structures that are
characteristic of “turbidites”—i.e., rocks deposited by tur-
bidity currents. Many geologists now use the name only
in a general sense, in reference to the dark, usually quartz-
poor, often well-indurated sandstones that occur in tur-
bidite (or flysch) sequences.

There are great differences between the Harz and Bunter
sandstones in Germany, the Aberystwyth and Millstone
grits in Great Britain, and the Franciscan and Navajo
formations of the United States. The differences in struc-
ture and mineralogy reflect fundamental differences in
both mode of deposition and relationship to phases of
earth history. The persistence of the term graywacke, de-
spite the confusion surrounding it, is testimony to the
need to express these differences succinctly, for this term
has been applied to the first of each pair cited above. The
plethora of definitions indicates the -difficulties experi-
enced in finding generally applicable criteria that ade-
quately express the differences.

This article treats the composition, properties, occur-
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rence, and origin of graywacke. See SANDSTONES; SEDI-
MENTARY ROCKS; MARINE SEDIMENTS; and SHALES for in-
formation on related rock types; see DENSITY CURRENTS
for additional discussions of origin; and see MOUNTAIN-
BUILDING PROCESSES and EARTH, GEOLOGICAL HISTORY OF
for the geological significance of graywackes.

PHYSICAL AND CHEMICAL PROPERTIES

Texture and structure. Graywackes typically are poor-
ly sorted, and the grain sizes present range over three
orders of magnitude—e.g., from 2 to 2,000 microns
(8 X 107° to 8 X 107 inch). Commonly, the coarsest part
of a graywacke bed is its base, where pebbles may be
abundant. Shale fragments, which represent lumps of
mud eroded from bottom sediments by the depositing cur-
rent, may be concentrated elsewhere in the bed.

Many graywackes contain much mud, typically 15-40
percent, and this increases as the mean grain size of the
rock decreases. The particles forming the rock are typi-
cally angular. This, and the presence of the interstitial
mud matrix, has led to these rocks being called “micro-
breccias.” The fabric and texture indicate that the sedi-
ments were carried only a short distance and were subject
to very little reworking by currents after deposition.

Although many geologists believe that the mud matrix
accumulated simultaneously with the coarser material,
some believe it was derived from alteration of rock frag-
ments subsequent to burial. This question remains un-
resolved. Some graywackes are notably deficient in ma-
trix (less than 10 percent, or even less than 5 percent).
This deficiency can occur at-the base of beds or be char-
acteristic of beds as a whole.. No detailed explanation
has yet been suggested.

Sections of graywackes cut parallel to the bedding dis-
play alignment of the long axes of the grains. This usu-
ally is best developed in the lower-middle part of a bed.
The alignment direction varies from level to level in the
bed and commonly deviates from the direction of current
markings on the underside of the bed, although some
workers report parallelism between grain orientation and
current markings. Imbrication (overlapping) of grains is
observed in sections cut normal to the bedding. The origin
of this variability in grain orientation andits deviation
from current markings are not understood.

Graywacke sequences are noted for having a character-
istic, and usually well-developed, association of sedimen-
tary structures. Typically the beds are sheetlike and are
interbedded in a regular fashion with shales, each bed
paralleling its predecessor with almost mathematical pre-
cision (Figure 1).

The thicknesses of beds in a graywacke sequence are
log-normally distributed (that is, the logarithms of bed
thickness are distributed about some mean value), or
nearly so, and typically there is a strong positive correla-
tion between maximum grain size and bed thickness.
Some graywacke sequences that are called “proximal
turbidites,” meaning that they accumulate near the
source area, largely lack this parallelism and regular
interstratification.

The most widespread internal structure of graywackes is
graded bedding (Figure 1), although some sequences dis-
play it poorly. Sets of cross strata more than three centi-
metres (1.28 inches) thick are very rare, but thinner sets
are very common. Parallel lamination is very common,
and convolute bedding is usually present. These internal
structures are arranged within graywacke beds in a regu-
lar sequence. They appear to result from the action of a
single current flow and are related to changes in the hy-
draulics of the depositing current. In some beds, the up-
per part of the sequence of structures is missing, presum-
ably because of erosion or nondeposition. In others, the
lower part is missing. This has been attributed to change
in the hydraulic properties of the depositing current as it
moves away from its source and its velocity decreases to
the point at which the first sediment deposited is lami-
nated, rather than massive and graded as is the case
closer to the source.

The most typical external structures of graywacke beds

Size,

shape, and
orientation
of particles
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